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Abstract

A variety of unsteady aerodynamic models for a two-
dimensional rigid plate undergoing pitching and plunging
motion is present in the literature. For a two-dimensional flexi-
ble wing, unsteady forces are generated by the wing deflection
in time. Hence the necessity of unsteady models that also take
into account the flexible degrees of freedom of the wing. In the
present work, the deflection of a flexible wing immersed in a
uniform free-stream has been decomposed using a truncated
Fourier series. The effects of a prescribed deflection of the flex-
ible wing on the flowfield in terms of each one of the leading
modes (from 1 to 10) have been investigated using high-fidelity
Direct Numerical Simulation (DNS) for viscous, compressible
flows at low Reynolds numbers. System identification tech-
niques are applied to obtain reduced order state-space models
that relate the deflection of the wing to the measured lift. The
system identification procedure is presented and the accuracy
and validity of the reduced order models are discussed. Finally,
the characteristics and the performance of the reduced or-
der models are addressed from a feedback control point of view.

Introduction

Micro-Air Vehicles (MAVs) are a class of unmanned aerial
vehicles characterized by reduced dimensions. Due to their re-
duced size, the inertia forces are of the same order of magnitude
as the aerodynamic loads and thus the flight dynamic time scales
and the aerodynamic time scales are comparable. This allows
MAVs to perform strict and agile maneuvers that are impracti-
cable for larger air vehicles. On the other hand, their reduced
size makes MAVs sensitive to disturbances such as gusts. As
the size of air vehicles decreases, unsteady aerodynamic effects
will play a pivotal role in enabling fast maneuvers and respond-
ing to disturbances [12].

As observed in many natural flyers (i.e. bats), most wings are
not rigid and their shape constantly changes during flight, sig-
nificantly improving aerodynamic performance [6]. Therefore,
a flexible wing is one solution that can be applied to MAVs in
order to improve their maneuvrability and controllability.

The aim of this work is to investigate how the lift of a flexible
wing is affected by a prescribed deflection. A two-dimensional
low-thickness flexible wing, when modeled as a continuum, has
an infinite number of degrees of freedom; to make the problem
tractable, the wing's deflection is decomposed into its Fourier
components, truncating the infinite sum to take into account
only the leading Fourier modes. We will see that the largest
unsteady forces are generated by the first few Fourier modes,
with the contribution decreasing for increasing mode number,
thus justifying this approach.

DNS is a powerful tool to investigate the unsteady aerody-
namics of a flexible wing at low Reynolds numbers. However,
despite the increasing computational capabilities of modern
computers, DNS can be computationally expensive and does
not provide insights on the characteristics of a fluid system
that are important for its feedback control. Hence there is
need of a reduced order model that is able to preserve the

accuracy of the DNS, significantly reducing the computational
cost, but that is also compatible with modern control techniques.

Unsteady Aerodynamic Model

The present work follows the procedure presented by Brunton
in [2]: details of the procedure, briefly summarized here, can be
found in the reference, together with an overview on unsteady
aerodynamic models.

A general model of a physical system, indicating the state
vector of the system with x, the input vector with u, the output
vector with y and a set of parameters related to the physics of
the system with µ, can be written as:

ẋ = f(x,u,µ)
y = g(x,u,µ) ,

(1)

where f and g are generic non-linear functions used to model
the physical system.
For the specific case of a pitching flat plate, equation (1) can be
expressed as

ẋ =∆
d
dt
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y = gli f t (x,α, α̇, α̈) .

(2)

α, α̇ and α̈ represent the angle of attack and its first and sec-
ond time derivatives respectively, while fNS and gli f t are related
to the non-linear Navier-Stokes equations. The superscript dot
will be used from now on to indicate time derivatives.

Brunton introduced a state-space reduced order model based
on the linearization of the two-dimensional, unsteady, incom-
pressible Navier-Stokes equations around an equilibrium con-
dition for a rigid flat plate. The equilibrium condition is defined
by the base angle of attack α0 and by the choice of the param-
eters µ, which include the Reynolds number and the pitching
axis location. In a linear state-space form, if x represents the
vorticity of the fluid, equation (2) becomes
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CL indicates the two-dimensional lift coefficient defined as CL =
2L/ρU2c, where L is the lift, ρ the fluid density of the undis-
turbed flow, U the free-stream velocity and c the wing chord.
Cα is defined as Cα = ∂CL/ ∂α and similarly Cα̇ = ∂CL/ ∂α̇ and
Cα̈ = ∂CL/ ∂α̈. The following definitions follow: A= ∂ fNS/ ∂x,
B = ∂ fNS/ ∂α̈ and C = ∂gli f t/ ∂x. From equation (2), a model
for plunging can also be obtained by simply changing the in-
put of the system from pitching acceleration to plunging accel-
eration [2]. Pitching and plunging can also be combined in a
multi-input single-output system [1].



In the present work, the procedure introduced by Brun-
ton is extended to take into account the deflection of a two-
dimensional wing. The deflection in time w(x, t) of the mean
line of the wing can be expressed using a truncated Fourier se-
ries:

w(x, t) =
N

∑
k=1

Wk(t) · sin
(

kπx
c

)
, for x ∈ [0,c] , (4)

where c represents the wing chord, k the deflection mode, Wk(t)
the amplitude of the deflection related to the k-th mode and N
the global number of modes taken into account. In analogy with
equation (3), for each deflection mode k, the following coeffi-
cients can be defined CWk

= ∂CL/ ∂Wk, CẆk
= ∂CL/ ∂Ẇk and

CẄk
= ∂CL/ ∂Ẅk. Consequently, the following relations hold:
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(5)

Ck
L represents the lift generated by a deflection in the single

k-th mode. The global lift due to all the considered modes
can be reconstructed by simply adding together the single
contributions from each mode (i.e. simple superimposition).
The contributions of pitching and plunging can also be included.

System Identification

An approximation of the model is obtained from DNS
through system identification and model reduction techniques.
The aim of the procedure is to identify the values of the coeffi-
cients CWk

, CẆk
and CẄk

(quasi-steady and added-mass force
coefficients) from a lift pulse response generated via DNS and
to find a low order approximation of the matrices A, B and C
representing the transient dynamics. Matrices and coefficients
of each model depend on parameters such as the wing shape, the
Reynolds number and the equilibrium condition chosen to lin-
earize the Navier-Stokes equations. A deflection velocity pulse
for a single mode k is applied to the wing and the response in
terms of lift is obtained from the DNS. The lift coefficient for
quasi-steady lift and added-mass are identified and subtracted
from the pulse response. The remaining signal is used to derive
a low order approximation of A, B and C. This is achieved us-
ing the Eigensystem Realization Algorithm (ERA), introduced
in [5]. The model obtained using ERA is equivalent to a model
obtained by Balanced Proper Orthogonal Decomposition, as
demonstrated in [9]. The entire identification procedure for a
pitching plate is explained in detail in [2] and it can be simi-
larly extended to the flexible modes of the present wing, simply
assuming a model in the form of equation (5).

The procedure introduced in [2] is based on pulse responses
obtained using an incompressible code. In the present work, a
compressible code is used, introducing the Mach number M as
an additional parameter. Hence the reduced order model also
depends on the Mach number. More importantly, compress-
ibility has an effect on the pulse response, affecting the high
frequencies. In particular, compressiblity introduces a phase
lag between the acceleration (input) and the high-frequency
lift response. In a compressible formulation there is no direct
proportionality between acceleration and lift, as is the case in
an incompressible formulation. However, the models presented
in equations (3-5) can also be applied to compressible flows:
the main difference is that in the compressible formulation the

high-frequency added-mass, instead of being captured by the
coefficients Cα̈ and CẄk

, is included in the model as a transient.

Maneuvers

The maneuvers used for system identification and for the vali-
dation of the reduced order models are presented in this Section.

Canonical Ramp-up, Hold, Ramp-down Maneuver

t t t t1 2 3 4
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Figure 1: Canonical ramp-up, hold, ramp-down maneuver. The
deflection of generic mode k is shown and the four time corners
of the maneuver are highlighted.

The following maneuver, used as a benchmark to compare the
performance of the reduced order model with the results from
DNS, is based on the pitch-up, hold and pitch-down maneuver
introduced by the AIAA fluid dynamics technical committee
on low-Reynolds number aerodynamics discussion group [3].
Here the angle of attack is simply replaced by the amplitude of
the deflection in the k-th mode Wk:

Wk(t) = W max
k

G(t)
max(G(t))

G(t) = log
[

cosh(a(t− t1))cosh(a(t− t4))
cosh(a(t− t2))cosh(a(t− t3))

]
.

(6)

W max
k represents the maximum value of the deflection reached

during the maneuver and a determines how gradual the
maneuver is (determining the magnitude of the acceleration
and the sharpness of the corners at t1, t2, t3 and t4). t1, t2, t3
and t4 define the time boundaries of the various phases of the
maneuver, as shown in figure (1), and they correspond to the
position in time of the peaks of the acceleration.

System Identification - Linear Ramp Maneuver

The following maneuver has been introduced by Brunton in
[2] and it is obtained from the maneuver introduced in the pre-
vious section, simply isolating the ramp-up portion. t1 and t2
represent the boundaries of the ramp-up portion. This maneu-
ver is used to approximate a pulse in the deflection velocity of
the flexible wing and to obtain the pulse lift response necessary
for system identification through ERA. Equation (7) shows the
analytical expression of the maneuver.

Wk(t) = W max
k

G(t)
max(G(t))

G(t) = log
[

cosh(a(t− t1))cosh(−a(t2))
cosh(a(t− t2))cosh(−a(t1))

] (7)

Direct Numerical Simulations

Numerical simulations are carried out using a well-validated
DNS code for compressible, viscous flows. The geometry of
the flexible wing immersed in the flow and the consequent
no-slip boundary condition are represented by a Boundary
Data Immersion Method (BDIM) [10]. The code and the



BDIM method have been rigorously validated on a number of
example problems, including the two-dimensional flow around
a cylinder at Re = 100 [11] and the flow around a membrane at
low and moderate Reynolds numbers [4].

Simulation Setup

For the present study, a two-dimensional flexible wing of unit
length (c = 1) and constant 0.9% thickness is immersed in a
uniform free-stream at zero angle of attack and Re = 100. The
Reynolds number is defined as Re =Uc/ν, where U is the free
stream velocity, c is the chord length of the wing and ν the kine-
matic viscosity of the fluid.

The deflection in time for each single mode of the flexible
wing is prescribed and it represents an input to the simulation.
A grid convergence study has been performed in order to de-
termine the size of the fluid domain and the grid resolution
that guarantees grid-independent results. The grid is an Eule-
rian Cartesian grid of dimensions 60c× 60c, with a resolution
of 409× 460 grid cells. The grid is refined in the vicinity of
the wing and the minimum grid spacing in both directions is
∆x = ∆y = 1× 10−3. In the x-direction, the grid is refined to-
wards the leading and trailing edges.

The leading and trailing edges are represented as sharp
edges. Additional simulations performed with round edges did
not show significant differences in the global measured lift for
the Reynolds number considered.

Mach Number

For steady and quasi-steady simulations, flows with low
Mach numbers (M << 1) can be treated as if they were incom-
pressible. Unsteady flows might show significant compressibil-
ity effects if the frequencies are high relative to the speed of
sound, even if the Mach number is low. Considering an oscil-
lating flat plate with reduced frequency ωr =

ωc
U , where ω is the

pulsation of the oscillations, the assumption of incompressible
flow can be justified only if, in addition to M << 1, Mωr << 1
also holds [7]. Compressiblity effects change the amplitude and
phase of the lift response to an unsteady motion, compared to
the incompressible case [8].

Because pressure waves generated by an unsteady maneuver
are traveling at a finite speed, in the presence of high accelera-
tions (such as the linear ramp used for system identification) the
response of the lift strongly depends on the Mach number [8].
Consequently, referring to equation (1), in a compressible code
the Mach number must be included in the parameter µ. In the
limit of M→ 0, the incompressible solution is recovered.
It is beyond the scope of this work to fully characterize
the effects of the Mach number on the lift response of an
unsteady maneuver. For the present study, M = 0.2 is cho-
sen as the Mach number for the system identification procedure.

Pulse Responses

The responses of the lift to a deflection velocity pulse in mode
1 and mode 2 are shown in figure (2). The pulse has the form
of equation (7): the duration of the pulse is τ2− τ1 = 0.001, to
adequately identify the high frequency in the model. τ indicates
dimensionless convective time τ = tU/c. The parameter a is
set to 1000 and the maximum deflection is W max

1 = W max
2 =

0.0017453, where the subscripts 1 and 2 refer to mode 1 and 2
respectively.

Two different scales are used to adequately represent the
pulse responses. The first part of the pulse (high frequencies) is
related to the acceleration of the deflection. Pressure waves are
generated on the wing surface, traveling at the speed of sound.
The time-scale of the first part of the response is strictly re-
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Figure 2: Pulse response for mode 1 and mode 2. Two different
time-scales are used to show the rapid acceleration response and
the slower consequent transient. After the transient, a steady-
state is reached (not shown in the figure).

lated to the duration of the pulse. The fast acceleration-related
response is followed by a slower transient, before the system
reaches a steady-state. The steady-state for both modes has been
omitted from figure (2). The pulse responses shown in figure
(2) are used to generate a reduced order model in the form of
equation (5) for each mode. Increasing the mode number k, the
magnitude of the lift response decreases for both even and odd
modes.

Mode 1 and odd modes in general show a significant peak in
the lift response: a positive deflection causes higher pressure on
the wing upper surface and lower pressure on the lower surface,
resulting in a global lift that has opposite sign to the deflection
itself. The high-frequency lift response has opposite sign com-
pared to the steady-state lift. This leads to limitations in the
performance of a closed-loop controller because of the inverse
response.

Mode 2 and even modes generate a pulse response orders of
magnitude smaller than that of even modes. The shape of the
deflection generates higher pressure and lower pressure regions
equally on both upper and lower surfaces, resulting in a global
lift close to zero. This behavior is of fundamental importance
from a control point of view: the smaller high-frequency
response of the even modes can be seen as a time delay, posing
significant limitations on the performance of any feedback
controller designed for the system, because actuation has an
effect only after waiting a certain time τ̄.

Validation and Model Performance

Figure (3) shows the frequency response for magnitude and
phase (Bode plot) of the reduced order models obtained for
modes 1 and 2. DNS was performed with the flexible wing
deflecting at prescribed frequencies to validate the model. The
magnitude and phase difference between the prescribed accel-
eration (sinusoidal input) and the output (lift) are evaluated
and the results are compared with those from the reduced or-
der models, showing excellent agreement in the considered fre-
quency range.

A generic deflection of the wing is prescribed using a
combination in time and space of modes 1 to 3, as shown in
figure (4). The deflection of each mode is prescribed using
the ramp-up, hold, ramp-down maneuver in equation (6). For
each mode a = 11, while the other parameters can be inferred
from figure (4). The lift from DNS is compared to the output
of the reduced order model. All the unsteady effects are well
captured by the reduced order model and minor differences can
be noticed only where the wing deflection is highest, probably
due to small non-linearities in the flow. In figure (4) the shape
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Figure 3: Frequency response of reduced order models for de-
flection modes 1 and 2 and comparison with DNS results.

of the wing at different time intervals and the lift comparison
between model and DNS are also shown.

Conclusions

A linear reduced-order model that represents the lift gener-
ated by the unsteady deflection of a two-dimensional wing has
been presented. High-fidelity DNS has been used together with
system identification techniques to determine the coefficients
of the reduced order model for single deflection modes. The
magnitude of the lift pulse response decreases as the mode
number k increases, showing a lower contribution to lift for
higher modes and thus justifying the representation of the
wing deflection with a truncated Fourier series. The accuracy
of the reduced order model has been investigated, showing
comparisons with DNS. The characteristics of the reduced
order models have been discussed in the context of feedback
control, posing new challenges for future work. Specifically,
odd modes generate an inverse high-frequency response, while
even modes show a time delay in the lift response. Both
phenomena represent performance limitations from a control
point of view.
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